organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-Benzoyl-3-(4-hydroxyphenyl)thiourea

# Aisha A. Al-abbasi, Siew San Tan and Mohammad B. Kassim\*

School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia Correspondence e-mail: mbkassim@ukm.my

Received 8 October 2010; accepted 8 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.085; data-to-parameter ratio = 13.6.

In the title compound,  $C_{14}H_{12}N_2O_2S$ , the aminophenol and the benzoyl groups adopt a *syn-anti* configuration with respect to the thiono C=S group across the thiourea C-N. The dihedral angle between the mean planes of the benzoyl and hydroxyphenyl rings is 36.77 (8)°. The molecules are stabilized by intramolecular N-H···O hydrogen bonds. In the crystal, weak intermolecular C-H···O, O-H···S and N-H···O hydrogen bonds link the molecules into a chain along the *c* axis.

#### **Related literature**

For the preparation and chemical properties of related compounds, see: Zhang *et al.* (2001). For related structures, see: Abosadiya *et al.* (2007); Hung *et al.* (2010); Yamin & Yusof (2003). For bond-length data, see: Allen *et al.* (1987).



# **Experimental**

#### Crystal data

 $\begin{array}{l} {\rm C_{14}H_{12}N_2O_2S} \\ M_r = 272.33 \\ {\rm Orthorhombic, $P2_12_12_1$} \\ a = 5.5865 \ (10) \ {\rm \AA} \\ b = 14.451 \ (2) \ {\rm \AA} \\ c = 16.462 \ (3) \ {\rm \AA} \end{array}$ 

 $V = 1329.0 (4) Å^{3}$ Z = 4 Mo K\alpha radiation  $\mu = 0.24 \text{ mm}^{-1}$ T = 298 K 0.50 \times 0.48 \times 0.35 mm

#### Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) *T*<sub>min</sub> = 0.886, *T*<sub>max</sub> = 0.919

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$   $wR(F^2) = 0.085$  S = 1.052351 reflections 173 parameters H-atom parameters constrained 7608 measured reflections 2351 independent reflections 2143 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.018$ 

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 958 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ 0.09 \ (9)} \end{array}$ 

# Table 1 Hydrogen-bond geometry (Å, $^{\circ}$ ).

| $D - H \cdots A$                    | D-H                    | $H \cdot \cdot \cdot A$             | $D \cdots A$                | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------|------------------------|-------------------------------------|-----------------------------|--------------------------------------|
| $N2-H2B\cdots O1$                   | 0.86                   | 1.95                                | 2.631 (2)                   | 135                                  |
| $N1 - H1B \cdot \cdot \cdot O2^{i}$ | 0.86                   | 2.29                                | 3.109 (2)                   | 158                                  |
| $O2-H2C\cdots S1^{ii}$              | 0.82                   | 2.53                                | 3.1533 (18)                 | 134                                  |
| $C1-H1A\cdots O2^{i}$               | 0.93                   | 2.51                                | 3.429 (3)                   | 172                                  |
| $C11 - H11A \cdots O1^{iii}$        | 0.93                   | 2.43                                | 3.262 (2)                   | 149                                  |
| Symmetry codes:                     | (i) $-x + \frac{1}{2}$ | $\frac{5}{2}, -v, z + \frac{1}{2};$ | (ii) $-x + \frac{5}{2}$ , - | $-v, z - \frac{1}{2};$ (iii)         |

 $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$ 

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010, the Libyan Government for providing a scholarship for AA and J.-C. Daran for his advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2068).

#### References

- Abosadiya, H. M., Yamin, B. M. & Ngah, N. (2007). Acta Cryst. E63, o2403– o2404.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, 0314.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, 0340-0341.
- Zhang, Y.-M., Wei, T.-B. & Gao, L.-M. (2001). Synth. Commun. 31 3099-3105.

supplementary materials

Acta Cryst. (2010). E66, o3181 [doi:10.1107/S1600536810045988]

# 1-Benzoyl-3-(4-hydroxyphenyl)thiourea

# A. A. Al-abbasi, S. S. Tan and M. B. Kassim

# Comment

The title compound, I, is closely related to the previously reported *N*-benzoyl-*N'*-(3-hydroxyphenyl)thiourea (II) (Abosadiya *et al.*, 2007) compound. As in most benzoylthiourea derivatives of the type  $R_1C(O)NHC(S)NHR_2$ , the title compound has a *syn-anti* configuration for the hydroxyphenyl and benzoyl groups with respect to the thiono C=S bond across the thiourea C—N bond (Fig 1). The bond lengths and angles in the molecules are in normal ranges (Allen *et al.*, 1987) and comparable to those in (II). All C—N bond lengths are shorter than the normal value for C—N single bond, and the bond lengths C7—O1 and C8—S1 become longer than normal values for a double bond, which suggests the presence of delocalized  $\pi$ -electrons. For example, the C=S bond (1.671 (2) Å) and C—N bond lengths (C8—N1 = 1.388 (2) Å, C8—N2 = 1.328 (2) Å and C9—N2 = 1.428 (2) Å) in the title compound are longer than that observed in an unsubsituted phenyl ring (III - Yamin *et al.*, 2003) in which the C=S bond length (1.6567 (15) Å) and C—N bond lengths are 1.393 (2), 1.326 (2) and 1.408 (2) Å, respectively. This is due to donating effect of OH group in the *para* position, which contributes to an increase in the bond length.

The benzoyl ring [C1/C2/C3/C4/C5/C6/C7/O1] (A), hydroxyphenyl ring [N2/C9/C10/C11/C12/C13/C14/O2] (B) and thiourea [(S1/N1/N2/C8/] (C) fragments are essentially planar with maximum deviations from their mean planes of 0.045 (2) Å for atom O1 (A), 0.010 (2) Å for atom C10 (B) and 0.008 (2)Å for atom C8 (C), respectively. The dihedral angle between the mean planes of A and B is 36.77 (8)°. The crytal structure is stabilized by an intramolecular N2—H2B···O1 hydrogen bond which forms a six-membered ring (N2/H2B/O1/C7/N1/C8) commonly observed in this class of ligands. In addition, the molecules are linked by weak intermolecular C11—H···O1, C1—H···O2, O2—H···S1 and N1—H···O2 hydrogen bonds (Table 2), resulting in a one-dimensional chain along the *c*-axis (Fig 2).

# **Experimental**

The title compound was first synthesized by (Zhang *et al.*, 2001) under the condition of solid-liquid phase transfer catalysis using polyethylene glycol as catalyst, however, a much simpler method was used to synthesize the title compound. The reaction scheme involved a reaction of benzoyl chloride (10 mmol) with ammonium thiocyanate (10 mmol) in dry acetone. The product, benzoyl isothiocyanate was reacted with 4-hydroxy aniline (10 mmol) to give the title compound with a 56% yield. A slow evaporation of ethanolic solution of the compound gave light brawn crystals suitable for X-ray diffraction.

# Refinement

All the non hydrogen atom were refined anisotropically. the hydrogen positions were calculated to give an idealized geometry fixed to ride on their respective atoms, with  $U_{iso}=1.2U_{eq}$  (C) for aromatic (CH = 0.93 Å),  $U_{iso}=1.2U_{eq}$  (N) for N (NH = 0.86 Å) and  $U_{iso}=1.5U_{eq}$  (O) for OH (OH = 0.82 Å).

**Figures** 



Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. Dashed lines indicate intramolecular N—H…O hydrogen bonds.

Fig. 2. Crystal packing of (I) viewed down the *a* axis. Dashed lines indicate weak C—H···O, C—H···O, O—H···S and N—H···O hydrogen bonds.

# 1-Benzoyl-3-(4-hydroxyphenyl)thiourea

| Crystal data                 |                                                       |
|------------------------------|-------------------------------------------------------|
| $C_{14}H_{12}N_2O_2S$        | F(000) = 568                                          |
| $M_r = 272.33$               | $D_{\rm x} = 1.361 {\rm Mg m}^{-3}$                   |
| Orthorhombic, $P2_12_12_1$   | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab       | Cell parameters from 1024 reflections                 |
| a = 5.5865 (10)  Å           | $\theta = 1.9 - 25.0^{\circ}$                         |
| <i>b</i> = 14.451 (2) Å      | $\mu=0.24\ mm^{-1}$                                   |
| c = 16.462 (3) Å             | T = 298  K                                            |
| $V = 1329.0 (4) \text{ Å}^3$ | Block, brown                                          |
| Z = 4                        | $0.50 \times 0.48 \times 0.35 \text{ mm}$             |

# Data collection

| Bruker SMART APEX CCD area-detector diffractometer                | 2351 independent reflections                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                          | 2143 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                          | $R_{\rm int} = 0.018$                                                     |
| ω scans                                                           | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ |
| Absorption correction: multi-scan ( <i>SADABS</i> ; Bruker, 2000) | $h = -6 \rightarrow 6$                                                    |
| $T_{\min} = 0.886, T_{\max} = 0.919$                              | $k = -15 \rightarrow 17$                                                  |
| 7608 measured reflections                                         | $l = -19 \rightarrow 17$                                                  |

# Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                                |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | H-atom parameters constrained                                                                       |
| $wR(F^2) = 0.085$               | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0494P)^{2} + 0.1346P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| <i>S</i> = 1.05                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |

| 2351 reflections                                               | $\Delta \rho_{\text{max}} = 0.13 \text{ e} \text{ Å}^{-3}$ |
|----------------------------------------------------------------|------------------------------------------------------------|
| 173 parameters                                                 | $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$ |
| 0 restraints                                                   | Absolute structure: Flack (1983), 958 Friedel pairs        |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.09 (9)                                  |

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters*  $(\hat{A}^2)$ 

|      | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| S1   | 1.13932 (14) | -0.04354 (4) | 0.71251 (4)  | 0.0812 (2)                |
| 01   | 0.7785 (3)   | 0.23667 (10) | 0.72476 (9)  | 0.0719 (4)                |
| N1   | 0.8692 (3)   | 0.09206 (10) | 0.76731 (8)  | 0.0518 (4)                |
| H1B  | 0.8429       | 0.0530       | 0.8057       | 0.062*                    |
| N2   | 1.0996 (3)   | 0.12902 (11) | 0.65596 (9)  | 0.0565 (4)                |
| H2B  | 1.0469       | 0.1841       | 0.6646       | 0.068*                    |
| C1   | 0.5090 (4)   | 0.10914 (14) | 0.89160 (13) | 0.0632 (5)                |
| H1A  | 0.6077       | 0.0573       | 0.8928       | 0.076*                    |
| C2   | 0.3268 (5)   | 0.11715 (16) | 0.94751 (14) | 0.0712 (6)                |
| H2A  | 0.3032       | 0.0712       | 0.9862       | 0.085*                    |
| C3   | 0.1812 (4)   | 0.19276 (18) | 0.94584 (14) | 0.0726 (6)                |
| H3A  | 0.0581       | 0.1983       | 0.9836       | 0.087*                    |
| C4   | 0.2149 (4)   | 0.26068 (17) | 0.88890 (14) | 0.0734 (6)                |
| H4A  | 0.1140       | 0.3119       | 0.8879       | 0.088*                    |
| C5   | 0.3978 (4)   | 0.25336 (14) | 0.83317 (12) | 0.0632 (5)                |
| H5A  | 0.4208       | 0.3000       | 0.7950       | 0.076*                    |
| C6   | 0.5475 (3)   | 0.17701 (12) | 0.83367 (10) | 0.0487 (4)                |
| C7   | 0.7395 (4)   | 0.17240 (12) | 0.77127 (10) | 0.0512 (4)                |
| C8   | 1.0373 (4)   | 0.06508 (13) | 0.70994 (11) | 0.0527 (4)                |
| C9   | 1.2439 (4)   | 0.11670 (13) | 0.58521 (11) | 0.0504 (4)                |
| C10  | 1.1577 (4)   | 0.15191 (12) | 0.51275 (11) | 0.0520 (5)                |
| H10A | 1.0118       | 0.1829       | 0.5119       | 0.062*                    |
| C11  | 1.2858 (4)   | 0.14146 (12) | 0.44198 (11) | 0.0518 (5)                |
| H11A | 1.2257       | 0.1643       | 0.3933       | 0.062*                    |
| C12  | 1.5042 (3)   | 0.09692 (12) | 0.44377 (12) | 0.0515 (5)                |
| C13  | 1.5928 (4)   | 0.06247 (16) | 0.51603 (11) | 0.0596 (5)                |
| H13A | 1.7399       | 0.0323       | 0.5170       | 0.072*                    |
|      |              |              |              |                           |

# supplementary materials

| C14<br>H14A<br>O2<br>H2C | 1.4626 (4)<br>1.5229<br>1.6406 (3)<br>1.5717 | 0.07290 (16<br>0.0503<br>0.08472 (10<br>0.1079 | ))        | 0.58682<br>0.6356<br>0.37487<br>0.3359 | (12)<br>(9) | 0.0594<br>0.071*<br>0.0682<br>0.102* | 4 (5)<br>*<br>2 (4)<br>* |              |
|--------------------------|----------------------------------------------|------------------------------------------------|-----------|----------------------------------------|-------------|--------------------------------------|--------------------------|--------------|
| Atomic displacer         | nent parameters (                            | $(\hat{A}^2)$                                  |           |                                        |             |                                      |                          |              |
|                          | $U^{11}$                                     | $U^{22}$                                       | $U^{33}$  |                                        | $U^{12}$    |                                      | $U^{13}$                 | $U^{23}$     |
| S1                       | 0.1110 (5)                                   | 0.0497 (3)                                     | 0.0828 (4 | 4)                                     | 0.0182 (3)  |                                      | 0.0277 (4)               | 0.0010 (3)   |
| 01                       | 0.1018 (11)                                  | 0.0536 (8)                                     | 0.0603 (  | 8)                                     | 0.0184 (8)  |                                      | 0.0223 (8)               | 0.0179 (6)   |
| N1                       | 0.0712 (10)                                  | 0.0432 (8)                                     | 0.0410 (  | 7)                                     | 0.0061 (8)  |                                      | 0.0053 (7)               | 0.0030 (6)   |
| N2                       | 0.0712 (10)                                  | 0.0480 (8)                                     | 0.0504 (  | 8)                                     | 0.0014 (8)  |                                      | 0.0101 (8)               | -0.0027 (7)  |
| C1                       | 0.0732 (14)                                  | 0.0513 (11)                                    | 0.0649 (  | 12)                                    | 0.0051 (10) |                                      | 0.0142 (10)              | 0.0055 (9)   |
| C2                       | 0.0783 (15)                                  | 0.0630 (13)                                    | 0.0723 (  | 13)                                    | -0.0108 (12 | 2)                                   | 0.0191 (12)              | 0.0028 (11)  |
| C3                       | 0.0575 (13)                                  | 0.0890 (17)                                    | 0.0713 (  | 13)                                    | -0.0058 (12 | 2)                                   | 0.0105 (11)              | -0.0166 (13) |
| C4                       | 0.0649 (14)                                  | 0.0824 (16)                                    | 0.0728 (  | 14)                                    | 0.0219 (12) |                                      | 0.0005 (12)              | -0.0090 (12) |
| C5                       | 0.0755 (14)                                  | 0.0596 (12)                                    | 0.0546 (  | 11)                                    | 0.0119 (11) |                                      | -0.0026 (11)             | 0.0023 (9)   |
| C6                       | 0.0573 (11)                                  | 0.0472 (10)                                    | 0.0416 (  | 8)                                     | 0.0009 (8)  |                                      | -0.0045 (8)              | -0.0040 (7)  |
| C7                       | 0.0669 (11)                                  | 0.0461 (10)                                    | 0.0406 (  | 9)                                     | 0.0026 (9)  |                                      | -0.0032 (8)              | 0.0018 (7)   |
| C8                       | 0.0627 (11)                                  | 0.0508 (10)                                    | 0.0446 (  | 9)                                     | -0.0008 (8) |                                      | -0.0022 (8)              | -0.0056 (8)  |
| C9                       | 0.0560 (11)                                  | 0.0481 (9)                                     | 0.0471 (  | 9)                                     | -0.0079 (9) |                                      | 0.0045 (8)               | -0.0071 (8)  |
| C10                      | 0.0548 (11)                                  | 0.0411 (9)                                     | 0.0600 (  | 11)                                    | 0.0009 (9)  |                                      | 0.0083 (9)               | 0.0050 (8)   |
| C11                      | 0.0618 (12)                                  | 0.0426 (10)                                    | 0.0509 (  | 10)                                    | -0.0032 (8) |                                      | 0.0049 (9)               | 0.0051 (8)   |
| C12                      | 0.0543 (11)                                  | 0.0470 (10)                                    | 0.0531 (  | 10)                                    | -0.0119 (9) |                                      | 0.0061 (8)               | -0.0105 (8)  |
| C13                      | 0.0464 (10)                                  | 0.0724 (13)                                    | 0.0602 (  | 11)                                    | -0.0001 (10 | ))                                   | -0.0044 (9)              | -0.0115 (10) |
| C14                      | 0.0522 (11)                                  | 0.0780 (13)                                    | 0.0480 (  | 10)                                    | -0.0026 (10 | ))                                   | -0.0083 (8)              | -0.0081 (9)  |
| O2                       | 0.0727 (10)                                  | 0.0735 (9)                                     | 0.0583 (  | 8)                                     | 0.0002 (8)  |                                      | 0.0169 (7)               | -0.0080 (7)  |
| Geometric paran          | neters (Å, °)                                |                                                |           |                                        |             |                                      |                          |              |
| S1—C8                    |                                              | 1 670 (2)                                      |           | С4—Н4                                  | А           |                                      | 0.930                    | 0            |
| 01-07                    |                                              | 1.070(2)<br>1.223(2)                           |           | C5-C6                                  |             |                                      | 1 385                    | (3)          |
| N1—C7                    |                                              | 1.370 (2)                                      |           | С5—Н5                                  | A           |                                      | 0.930                    | 0            |
| N1—C8                    |                                              | 1.388 (2)                                      |           | C6—C7                                  |             |                                      | 1.486                    | 5(3)         |
| N1—H1B                   |                                              | 0.8600                                         |           | C9-C14                                 | 4           |                                      | 1.376                    | (3)          |
| N2—C8                    |                                              | 1.328 (2)                                      |           | C9—C10                                 | 0           |                                      | 1.384                    | (3)          |
| NO CO                    |                                              | 1 429 (2)                                      |           | C10 C                                  | 11          |                                      | 1.270                    | (-)          |

| NI-IIID   | 0.8000      | 0)-014   | 1.570(5)    |
|-----------|-------------|----------|-------------|
| N2—C8     | 1.328 (2)   | C9—C10   | 1.384 (3)   |
| N2—C9     | 1.428 (2)   | C10—C11  | 1.376 (3)   |
| N2—H2B    | 0.8600      | C10—H10A | 0.9300      |
| C1—C2     | 1.377 (3)   | C11—C12  | 1.379 (3)   |
| C1—C6     | 1.385 (3)   | C11—H11A | 0.9300      |
| C1—H1A    | 0.9300      | C12—O2   | 1.378 (2)   |
| C2—C3     | 1.362 (3)   | C12—C13  | 1.381 (3)   |
| C2—H2A    | 0.9300      | C13—C14  | 1.382 (3)   |
| C3—C4     | 1.370 (3)   | C13—H13A | 0.9300      |
| С3—НЗА    | 0.9300      | C14—H14A | 0.9300      |
| C4—C5     | 1.377 (3)   | O2—H2C   | 0.8200      |
| C7—N1—C8  | 128.94 (15) | O1—C7—C6 | 121.81 (17) |
| C7—N1—H1B | 115.5       | N1—C7—C6 | 116.91 (15) |

| C8—N1—H1B   | 115.5        | N2—C8—N1        | 115.91 (16)  |
|-------------|--------------|-----------------|--------------|
| C8—N2—C9    | 127.36 (16)  | N2—C8—S1        | 125.54 (15)  |
| C8—N2—H2B   | 116.3        | N1—C8—S1        | 118.53 (13)  |
| C9—N2—H2B   | 116.3        | C14—C9—C10      | 119.66 (17)  |
| C2—C1—C6    | 121.0 (2)    | C14—C9—N2       | 122.90 (17)  |
| C2—C1—H1A   | 119.5        | C10—C9—N2       | 117.43 (17)  |
| C6—C1—H1A   | 119.5        | C11—C10—C9      | 120.56 (18)  |
| C3—C2—C1    | 119.7 (2)    | C11—C10—H10A    | 119.7        |
| C3—C2—H2A   | 120.2        | C9—C10—H10A     | 119.7        |
| C1—C2—H2A   | 120.2        | C10-C11-C12     | 119.57 (18)  |
| C2—C3—C4    | 120.4 (2)    | C10-C11-H11A    | 120.2        |
| С2—С3—НЗА   | 119.8        | C12—C11—H11A    | 120.2        |
| С4—С3—НЗА   | 119.8        | O2—C12—C11      | 122.08 (18)  |
| C3—C4—C5    | 120.2 (2)    | O2—C12—C13      | 117.68 (18)  |
| C3—C4—H4A   | 119.9        | C11—C12—C13     | 120.24 (18)  |
| C5—C4—H4A   | 119.9        | C12—C13—C14     | 119.87 (19)  |
| C4—C5—C6    | 120.4 (2)    | C12—C13—H13A    | 120.1        |
| C4—C5—H5A   | 119.8        | C14—C13—H13A    | 120.1        |
| С6—С5—Н5А   | 119.8        | C9—C14—C13      | 120.08 (19)  |
| C1—C6—C5    | 118.32 (18)  | C9—C14—H14A     | 120.0        |
| C1—C6—C7    | 123.80 (17)  | C13—C14—H14A    | 120.0        |
| C5—C6—C7    | 117.87 (17)  | С12—О2—Н2С      | 109.5        |
| O1—C7—N1    | 121.28 (18)  |                 |              |
| C6—C1—C2—C3 | 0.2 (3)      | C9—N2—C8—S1     | 7.0 (3)      |
| C1—C2—C3—C4 | 0.1 (4)      | C7—N1—C8—N2     | 7.5 (3)      |
| C2—C3—C4—C5 | -0.5 (4)     | C7—N1—C8—S1     | -171.15 (16) |
| C3—C4—C5—C6 | 0.6 (3)      | C8—N2—C9—C14    | -49.9 (3)    |
| C2-C1-C6-C5 | -0.1 (3)     | C8—N2—C9—C10    | 130.9 (2)    |
| C2—C1—C6—C7 | -179.5 (2)   | C14—C9—C10—C11  | 1.6 (3)      |
| C4—C5—C6—C1 | -0.3 (3)     | N2-C9-C10-C11   | -179.13 (16) |
| C4—C5—C6—C7 | 179.15 (19)  | C9—C10—C11—C12  | -1.2 (3)     |
| C8—N1—C7—O1 | -7.2 (3)     | C10-C11-C12-O2  | -179.80 (17) |
| C8—N1—C7—C6 | 171.87 (17)  | C10-C11-C12-C13 | 0.4 (3)      |
| C1—C6—C7—O1 | -174.8 (2)   | O2-C12-C13-C14  | -179.95 (18) |
| C5—C6—C7—O1 | 5.8 (3)      | C11—C12—C13—C14 | -0.2 (3)     |
| C1—C6—C7—N1 | 6.1 (3)      | C10-C9-C14-C13  | -1.4 (3)     |
| C5—C6—C7—N1 | -173.29 (17) | N2-C9-C14-C13   | 179.44 (19)  |
| C9—N2—C8—N1 | -171.58 (17) | C12—C13—C14—C9  | 0.7 (3)      |
|             |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                       | <i>D</i> —Н                                            | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-------------------------------|--------------------------------------------------------|--------------|--------------|---------|
| N2—H2B…O1                     | 0.86                                                   | 1.95         | 2.631 (2)    | 135     |
| N1—H1B···O2 <sup>i</sup>      | 0.86                                                   | 2.29         | 3.109 (2)    | 158     |
| O2—H2C…S1 <sup>ii</sup>       | 0.82                                                   | 2.53         | 3.1533 (18)  | 134     |
| C1—H1A···O2 <sup>i</sup>      | 0.93                                                   | 2.51         | 3.429 (3)    | 172     |
| C11—H11A···O1 <sup>iii</sup>  | 0.93                                                   | 2.43         | 3.262 (2)    | 149     |
| Summatry addres (i) $w = 5/2$ | 1/2, $1/2$ , $(11)$ , $1/5/2$ , $1/2$ , $(11)$ , $1/2$ | 1/2 = 1/2    |              |         |

Symmetry codes: (i) -x+5/2, -y, z+1/2; (ii) -x+5/2, -y, z-1/2; (iii) x+1/2, -y+1/2, -z+1.

Fig. 1



